GCE

Mathematics

Advanced GCE

Unit 4729: Mechanics 2

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question		Expected Answer	Mark	Rationale/Additional Guidance
1	(i)	$\begin{aligned} & 3 \mathrm{x}_{\mathrm{G}}=2 \times 0.3+1 \times 0.6 \mathrm{OR} 3 \mathrm{x}_{\mathrm{G}}=2 \times 0.3+0 \mathrm{OR} 3 \mathrm{x}_{\mathrm{G}}=4 \times 0.3 \\ & \mathrm{OR} 3 \mathrm{y}_{\mathrm{G}}=1 \times 0.3+1 \times 0.6+0 \mathrm{OR} 3 \mathrm{y}_{\mathrm{G}}=4 \times 0.3-1 \times 0.3 \\ & \mathrm{x}_{\mathrm{G}}=0.4 \text { (from } \mathrm{AD} \text {) OR } \mathrm{x}_{\mathrm{G}}=0.2 \quad \text { (from BC) } \\ & \mathrm{y}_{\mathrm{G}}=0.3 \mathrm{~m} \text { from } \mathrm{AB} \text { or } \mathrm{CD} \\ & \mathrm{AG}^{2}=0.4^{2}+0.3^{2} \\ & \mathrm{AG}=0.5 \mathrm{~m} \end{aligned}$	M1 A1 A1 M1 A1 [5]	Table of moments idea. M0 for reducing to 1D problem. Masses/weights may be included. Pythagoras with 2 appropriate distances. This may only be seen in (ii), allow M1A1 in this case.
	(ii)	$\begin{aligned} & v=0.5 \times 3 \\ & v=1.5 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1	Allow use of candidate's $0.2,0.4,0.3,0.5$
2	(i)	$\begin{align*} & \left(k 25^{3 / 2}\right) \times 25=15000 \\ & k=4.8 \tag{AG} \end{align*}$	M1 A1 A1 [3]	Tractive force \times speed = power
	(ii)	$\begin{aligned} & \mathrm{R}=4.8 \times 16^{3 / 2} \\ & \mathrm{~T}-4.8 \times 16^{3 / 2}+700 \mathrm{~g} \times 1 / 15=700 \times 0.3 \\ & \mathrm{P}=59.9 \times 16 \\ & \mathrm{P}=958 \mathrm{~W} \end{aligned}$	B1 M1 A1 M1 A1 [5]	307.2 N2L, 4 terms to find tractive force (T) Allow $\operatorname{cv}(\mathrm{R})$, R not 600; ($\mathrm{T}=59.866 .$. 16xTractive force

3	(i)		$\begin{aligned} & \mathrm{T}_{\mathrm{A}} \cos 30+\mathrm{T}_{\mathrm{B}} \cos 60=0.4 \mathrm{~g} \\ & 2 \mathrm{~T} \cos 30+\mathrm{T} \cos 60=0.4 \mathrm{~g} \\ & \mathrm{~T}_{\mathrm{B}}=1.76 \mathrm{~N} \\ & \mathrm{~T}_{\mathrm{A}}=3.51 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{array}$	Resolves vertically, 3 terms $\mathrm{T}=1.756$. Watch for MR of $\mathrm{T} \cos 30+2 \mathrm{~T} \cos 60=0.4 \mathrm{~g}$ Accept 3.52
	(ii)		$\begin{aligned} & r=0.5 \sin 30(=0.25) \\ & 3.51 \sin 30+1.76 \sin 60=0.4 \omega^{2} 0.5 \sin 30 \\ & \omega=5.72 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	B1 M1 A1ft A1 [4]	N2L radial, 3 terms $\operatorname{cv}(1.76,3.51,0.25)$ Accept 5.73
4	(i)		$\begin{aligned} & W D=100 \cos 20 \times 30 \\ & W D=2820 \mathrm{~J} \end{aligned}$	M1 A1 [2]	Product of 3 relevant elements. Angle could be 5, 25 or complements 2819.1...
	(ii)		$\begin{aligned} & \hline \mathrm{PE}=25 \mathrm{~g} \times 30 \sin 5 \\ & \mathrm{PE}=641 \end{aligned}$	M1 A1 [2]	Product of weight and vertical height. Allow without g 640.6
	(iii)	OR	$\begin{aligned} & 2819.1=640.6 \\ & +30 \times 70+25 v^{2} / 2 \\ & v=2.51 \mathrm{~ms}^{-1} \\ & 25 a=100 \cos 20-70-25 g \sin 5 \\ & a=0.105 \\ & v^{2}=2 \times 30 \times x^{\prime} a^{\prime} \\ & v=2.51 \end{aligned}$	M1 A1ft A1 A1 [4] *M1 A1 dep*M1 A1 [4]	4 term energy equation $\mathrm{ft}(\mathrm{cv} 2820$ and cv 641) cao 4 term equation Allow 0.1 here Or equivalent complete method cao

5	(i)		$\begin{aligned} & x_{H}=3 \times 0.6 / 8 \\ & \pi\left(0.6^{2} \times 0.6\right)(0.6 / 2)-\left(0.6^{3} \times 2 \pi / 3\right) 0.225 \\ & =\pi \times 0.6^{3}(1+2 / 3) x_{G} \\ & x_{G}=0.09 \mathrm{~m} \end{aligned}$	B1 M1 A1 A1 A1 [5]	CoM hemisphere ($\mathrm{x}_{\mathrm{H}}=0.225$), may be implied Use of table of moments idea SC Volume of sphere used, max B1M1A1, moment equation fully correct for A1 (3/5) Accept -0.09
	(ii)	(a)	$\begin{aligned} & \mathrm{mg}(0.09 \cos 45)= \\ & 2(0.6+0.6 \cos 45+0.6 \sin 45) \\ & \mathrm{m}=4.65 \mathrm{~kg} \end{aligned}$		Attempt at moments (must resolve), allow without g $\begin{aligned} & 2\left(0.6+\sqrt{ }\left[0.6^{2}+0.6^{2}\right]\right) \\ & (4.6451 \ldots) \end{aligned}$
	(ii)	(b)	$\begin{aligned} & 2 / 4.6451 \mathrm{~g} \\ & \mu \geq 0.0439 \end{aligned}$	M1 A1 A1 [3]	Ratio force/weight cv(4.65) Correct inequality sign, accept 0.044
6	(i)		$\begin{aligned} & 0=(14 \sin 30)^{2}-2 \mathrm{gh} \\ & \mathrm{~h}=2.5 \mathrm{~m} \end{aligned}$	M1 A1 [2]	$\mathrm{h}=(14 \sin 30) \times 1 / 1.4-\mathrm{g}(1 / 1.4)^{2} / 2$ or use $\left(\mathrm{u}^{2} \sin ^{2} \theta\right) / 2 \mathrm{~g}$
	(ii)		$\begin{aligned} & 0.4 \times 15=0.4(14 \cos 30)+I \\ & I=1.15 \end{aligned}$	M1 A1 A1 [3]	Impulse = change in momentum Not 14 or 0 for horizontal speed before impulse aef
	(iii)		$\begin{aligned} & \mathrm{v}^{2}=(14 \sin 30)^{2}+15^{2} \\ & \mathrm{v}=16.6 \mathrm{~ms}^{-1} \\ & \tan \theta=14 \sin 30 / 15 \text { OR } \tan \psi=15 / 14 \sin 30 \\ & \theta=25(.0)^{\circ} \text { OR } \psi=65(.0)^{\circ} \end{aligned}$	M1 A1 M1 A1 [4]	Not $(14 \sin 30)^{2}+(14 \cos 30)^{2}$ Allow $\sqrt{ } 274$ Correct trig to find an appropriate angle; not $14 \cos 30$ for 15
	(iv)		$\begin{aligned} & t=14 \sin 30 / \mathrm{g}(=1 / 1.4=0.7142 . .) \\ & T=1.43 \mathrm{~s} \\ & R=14 \cos 30 / 1.4+15 / 1.4 \\ & R=19.4 \mathrm{~m} \end{aligned}$	M1 A1 M1A1 A1 [5]	Rise or fall time (not to be given in (i)) Accept 10/7 $\left(14^{2} \sin (2 \times 30)+16.6^{2} \sin (2 \times 25)\right) / 2 \mathrm{~g} .14$ resolved, 15 not

[END]

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

